C.U.SHAH UNIVERSITY Summer Examination-2018

Subject Name:	Topology
---------------	----------

	Subject	Code: 4SC06TOC1		Branch: B.Sc. (Mathema	ntics)		
	Semeste	r: 6 Date:	02/05/2018	Time: 02:30 To 05:30	Marks : 70		
	Instructi	ons:					
	(1)	Use of Programmable	e calculator & ar	ny other electronic instrument is p	prohibited.		
	(2)	Instructions written o	n main answer b	book are strictly to be obeyed.			
	(3) Draw neat diagrams and figures (if necessary) at right places.						
	(4)	Assume suitable data	if needed.				
0-1		Attempt the follow	ving questions.		(14)		
Q-1	a)	Define: Topology	ing questions.		(01)		
	u) b)	Let X be any set. w	rite co-countable	e topology on X.	(01)		
	 c) Define: Lower limit topology on R d) Consider R with usual topology and lower limit topology. Which topology is 						
		stronger than the ot	her?		(01)		
	e)	Define: Door space	· · · · ·		(01)		
	f)	Define: Interior of	set.		(01)		
	g)	Define: Closure of	set.		(01)		
	h)	Is it true that $(A \cap A)$	$B)' = A' \cap B'?$		(01)		
	i)	Define: Boundary	point of set.		(01)		
	j)	Define: Continuous	s function.		(01)		
	k)	Define: Homeomor	phism.		(01)		
	l)	Define: Disconnect	ed space		(01)		
	m)	Define: T_2 space.			(01)		
	n)	Define: Compact sp	pace.		(01)		
Atte	mpt any	four questions from	Q-2 to Q-8				
Q-2		Attempt all questi	ons		(14)		
-	a)	Let X be a set.			(05)		
		Let $\tau_f = \{U \subset X \mid$	either $X - U = X$	X or X - U is finite then prove that	$t(X, \tau_f)$ is		
		topological space.		-	.).		
	b)	Let X be topologica	al space. Then p	rove that,	(05)		
		(i) \emptyset , X are closed	1 1				
		(ii) Any finite union	n of closed sets i	in Xis closed.			
		(iii) Any arbitrary i	ntersection of cl	osed sets in X is closed.			
	c)	Let X be a non-emp	oty set. Compare	the following topology,			
		(i) Co countable top	pology (ii) Co-	finite topology (iii) Indiscrete top	pology (04)		
		(iv) Discrete topolo	ogy				
Q-3		Attempt all questi	ons		(14)		
	a)	Let (X, τ) be a topo	ological space &	A, B be two subsets of X then pro	ove that, (07)		
		(i) If $A \subset B$ then A	$^{\circ} \subset B^{\circ}.$				

		(ii) $(A \cap B)^0 = A^0 \cap B^0$.	
		(iii) $A^0 \cup B^0 \subset (A \cup B)^0$. Give an example which shows that	
		$A^0 \cup B^0 \neq (A \cup B)^0$	
	b)	Let (X, τ) be a topological space and Y be a non empty subset of X then prove	(05)
		that the collection $\tau_y = \{U \cap Y \mid U \in \tau\}$ is a topology on Y.	
	c)	Let $X = R$ and $A = (0,1)$, find A^0 , A , ext (A) and A'.	(02)
Q-4		Attempt all questions	(14)
	a)	Let X be a topological space and A be a subset of X. Then prove that $A = A \cup A$.	(05)
	b)	Let X, Y, Z be topology space and $f: X \to Y$ and $g: Y \to Z$ are continuous	(05)
		functions then prove that $gof: X \to Z$ is continuous.	
	c)	Let (X, τ) be disconnected space and τ is finer than τ . Prove that (X, τ) is disconnected.	(04)
Q-5		Attempt all questions	(14)
	a)	Let X and Y be a topological space and $f: X \rightarrow Y$, then prove that following are equivalent	(06)
		(i) f is continuous.	
		(ii) For every subset A of X then $f(\overline{A}) \subset \overline{f(A)}$.	
		(iii) For every close set B in Y then $f^{-1}(B)$ is closed in X.	
	b)	Prove that R with lower limit topology is disconnected.	(04)
	c)	If X has more than two elements then prove that X is T_2 space with discrete	(04)
		topology.	
Q-6		Attempt all questions	(14)
	a)	Prove that every closed subset of compact space is compact.	(05)
	b)	Prove that continuous image of connected space is connected.	(05)
	c)	Prove that every subspace of T_1 space is T_1 space.	(04)
Q-7		Attempt all questions	(14)
	a)	Prove that every compact subset of T_2 space is closed.	(06)
	b)	Prove that continuous image of compact space is compact.	(05)
0.0	C)	Is <i>R</i> compact space with usual topology? Justify your answer.	(03)
Q-8	``	Attempt all questions	(14)
	a)	State and prove Heine Borel theorem.	(09)
	b)	Give an example of topological space which is T_1 space but not T_2 space.	(05)

